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SUMMARY

A method is developed for the minimization of gear tooth surface deviations

between theoretical and real surfaces to improve the precision of surface manufac-
ture. Coordinate measurement machinery is used to determine a grid of surface
coordinates. Theoretical calculations are made for the grid points. A least-square
method is used to minimize the deviations between real and theoretical surfaces by
altering the manufacturing machine-tool settings. An example is given for a hypoid
gear.

INTRODUCTION

The Gleason Works were pioneers in the application of coordinate measurements to
improve the precision manufacturing of hypoid and spiral bevel gears (ref. 1). In
aerospace applications, duplication of flight-qualified master gears is very impor-
tant, and coordinate measurement has now become part of the normal production pro-
cess. Methods to enhance and extend the use of this machinery can be very valuable
to aerospace gear manufacturers.

The approach developed in this paper enables one do determine deviations of a
real surface from the known theoretical surface. This is accomplished by using
coordinate measurements and minimizing the deviations to correct the previously

applied machine-tool settings. The surface deviations are represented in the direc-
tion of the normal to the theoretical surface. The coordinate measurements are
performed by a machine with 4 or 5 degrees of freedom. In the case of 4 degrees of
freedom, the probe performs three translational motions (fig. 1); the fourth motion,
rotation, is performed by turning the table with the workpiece. The axis of
rotational motion coincides with the axis of the workpiece. In the case of a
5-degree-of-freedom machine, the fifth degree of freedom is used to provide the probe
deflections in the direction of the normal to the theoretical surface. The probe is
provided with a changeable spherical surface whose diameter can be chosen from a wide
range.

The motions of the probe and the workpiece for coordinate measurements are com-
puter controlled and for this purpose a grid, the set of points on the surface to be
measured, must be chosen. There is a reference point, one point on the grid, that is
necessary for the initial installments of the probe. There are two orientations of
the probe installment that are applied for measurements of a gear (fig. l(a)) and a
pinion (fig. 1(b)), depending on the anglh Z ieit cone.
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Figure 1-Surface measurement orientation for (a) gearand (b) pirion.

The mathematical aspects of coordinate measurements will now be described

(ref. 2): First, it is necessary to derive the equations for the theoretical sur-

face. In many cases, this surface can be derived as the envelope to the family of

generating surfaces, namely the tool surfaces. Next, the results of coordinate
measurements must be transformed into deviations of the real surface represented in

the direction of the surface normal. Here, the surface variations are represented in

terms of the corrections to the machine-tool settings. The surface deviations

obtained from coordinate measurements and the surface variations determined by the

corrections of machine-tool settings can be represented by an overdetermined system

of linear equations. The number k of these equations is equal to the number of
grid points, and the number of unknowns m is equal to the number of corrections of

machine-tool settings (m << k). The optimal solution to such a system of linear
equations enables one to determine the sought-for corrections of machine-tool

settings.

EQUATIONS OF THEORETICAL TOOTH SURFACE E.t

Considering that the theoretical surface can be determined directly, we repre-

sent it in coordinate system S in two-parametric form as
t

where r and n are the position vector and unit normal to the surface, respec-t )t

tively, and (u,G) are the Gaussian coordinates (surface coordinates).
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For the case when surface is the envelope to the family of generating- t

surface Lc, we represent in S surface E and the unit normal n to E as
(ref. 3)

r t = [Stjrc(Uc, ), = 0 (2)

t = [Ltc]n,(u. ,c),f(uc, , ) = 0 (3)

where (uc,c) are the Gaussian coordinates of the generating surface E , and 0 is
the generalized parameter of motion in the process fo" --reration. The equation of
meshing is

4 () ct) 4-1

where N(C) is the normal to E', and v (ct) is the relative motion for a point of
contact of £E and E . Matrices [M tc] and [Lt ] 3x3 describe the coordinate
transformation from S to S for a position vector and surface normal, respec-C t

tively. Position vectors in three-dimensional space are represented with homogeneous

coordinates.

COORDINATE SYSTEMS USED FOR COORDINATE MEASUREMENTS

Coordinate systems Sm and St are rigidly connected to the coordinate measur-
ing machine (CMM) and the workpiece being measured, respectively (fig. 2). The

Xm

• i O t

Aoession For

NTIS GRA&I
DTIC TAB 13

Figure 2 -Relationship between theoretical and measurement Unannounced 0
coordinate systems. (p, radial distance to point from axis of
rotation.) Just if I cat ton -

By --------- _ ___

Distribution/

I Availability Codes

Avail and/or

Dis Special

3



Z t

O tl iii Yt

Fig,,re 3.-Measurement grid on tooth surface.

backface cf the gear is installed flush with the base plane of CMM. The distance 1
between the origins 0 and 0 is assumed to be known, but the parameter 6 ofm t

orientation must be determined (see the following section). The coordinate transfor-
mation from S to S is represented by the matrix equation

r m = [Mt]r t  (5)

MEASUREMENT GRID AND ESTABLISHMENT OF THE REFERENCE POINT

The grid is a set of points on E chosen as points of contact between the
probe and E. (fig. 3). Fixing the value of zt for the point of the grid and the
value of, say, Y. (or x t), we can obtain the following equations:

y (ui,e ) = h, z(ui,oi) = li (i = 1 .... k) (6)

where k is the number of grid points.

We consider h. and i as given and solve equations (6) for (u.,6). Then we
can determine the position vectors and the unit normals for k points of the grid
using the equations

i) (7)
r. - [xt(ui, 1)Yt(Ui,0i)zt(ui ) T, (i = 1 .... ,k)

n (i) [nx(U )n ((u, ) ] T i = 1 ... , k) (8)nt t Ytu'jntu,

The position vector for the center of the probe, if the deviations are zero, is
represented by
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R t  = rt  + pnt  (i = 1,. .. k)(9

where p is the radius of the probe sphere.

The referenri point

(0) (0) ) ) (o) T (10r t  =[x t u 0(0) )Yt(Uo 0,(o )zt( H( )

is usually chosen as the mean point of the grid.

The center of the probe that corresponds to the reference point on Et is
determined from equation (9) as

(0)) u(0) u(0)) T(i
Rt  = [Xt(u (  ,0 (0 )Yt(u ,' °) Zt( ' 0)H( 1

where (u are known values.

The coordinates of the reference center of the probe are represented in coordi-
nate system S of the measuring machine by the matrix equation

(0) (0) (12)

Equation (12) yields

(0) (o) 0) J

xm  = xm (5,u
(0, )

(0) ( 0) (13)
Ym = ym (6,(u (),

(0) (o) ( (0)
z M  = z m ( 6 ,u 0

(0) (0) (0)
Three equations (13) contain four unknowns: 6, xm ' Y , z. To solve these equa-
tions, we may consider that one of the coordinates of the reference point of the

(0)
probe center, say, ym, may be chosen equal to zero. This is accomplished by
requiring the reference point to lie in the xm - zm plane. The orientation of
angle 6 is now established to satisfy this requirement, and all measurements are
referenced from this location. Then equation system (13) allows one to determine

(o) (0) (0) (0) (0)6 ,x m  and zm  (ref. 2). Coordinates xM y = 0, zM  are necessary for the
initial installment of the center of the probe.
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MEASUREMENT OF THE DEVIATIONS OF THE REAL SURFACE

The deviations of the real surface are caused by manufacturing errors, heat
treatment, etc. Vector positions of the center of the probe for the theoretical
surface and the reai surface can be represented a. follows:

Rm = rm(u,6) + pnm(u,) (14)

R* = rT(u,O) + Xn (u,e) (15)

where r and n are the position vector and the unit normal to the theoreticalm m

surface and are represented in coordinate system S of the measuring machine; X
determines the real location of the probe center and is considered along the normal

to the theoretical surface; R and R represent in S the position vector of thein m
probe center for the theoretical and real surfaces, respectively. Equations (14)

and (15) yield

R Rm = (X - P)nm = Annm (16)

and

An = (R* - R n m  
(17)

m M,

The position vector Rm  is determined by coordinate measurements for points of the
grid. Equation (17) determines numerically the function

An, = Ani(ui, i) (i = 1 ..... k) (18)

that represents the deviations of the real surface for each point of the grid.

MACHINE TOOL SETTINGS TO MINIMIZE DEVIATIONS

The procedure used to minimize the deviations can be represented in two stages:
(1) determination of variations of theoretical surface caused by changes of applied
machine-tool settings, and (2) minimization of deviations of real surface by appro-
priate correction of machine-tool settings.

We consider that the theoretical surface is represented in S ast

rt = rt(uO,dj) (j = 1,... m) (19)

where parameters d are the machine-tool settings. The surface variation is

represented by

art  art  m art
6rt  5u + 60 + t6d (20)

6I
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We multiply both sides of equation (20) by the surface unit normal nt and take into

account that Ort/3G n = ar./au n = 0, since art/aO and r t/au lie in the
plane that is tangent to the surface. Then we obtain

art  d a(d (21)

5r t • nt = E nj1d

We can now consider a system of k linear equations in m unknowns (m << k) of the
following structure:

al 6d1 + a12 5d 2 + + alin6dn = b1

............................... (22 )

a, 1 5d1 + ak 6 d2 + ++ a6d, =bk

Here

b. = An, = (R.- Ri) ., (23)

where i designates the number of grid points; a (s = 1...,k; j =

represents the dot product of partial derivatives r t/ad j and unit normal n . The
system (22) of linear equations is overdetermined since m << k. The essence of the
procedure for miaimization of deviations is determining unknowns 6d (j =
that will minimize the difference between the left and right sides of equations (22).
The solution employed the least-square method. The subroutine DLSQRR of IMSL MATH/
LIBRARY (ref. 4) was used to computerize the procedure.

APPLICATION OF METHOD TO THE INSPECTION OF FORMATE HYPOID GEAR

Each tooth side of a formate face-hobbed gear is generated by a cone, and the
gear tooth surface is the surface of the generating cone. Two cones that are shown
in figure 4(a) represent both sides of the gear space. The following equations
represent in coordinate system S gear surfaces for both sides and the unit normal
to such surfaces (fig. 4(b)):

-s~cos aG

(r - sGsin a,)sin 0G (24)
r =

(r - sGsin a')cOs 0G

1
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sinl a-,

- cos a sin G _ (25)

- cos acos 6

where, r is the position vector and n the unit normal; r is the cutter tip

radius; is the cutter blade angle (aG > 0 for the concave side and a < 0 for

the convex side).

Figure 5 shows the installment of the generating cone on the cutting machine.

Coordinate systems S and S are rigidly connected to the cutting machine arid the

gear being generated, respectively. Systems S , S , and S are rigidly connectedC

to each 3ther since the gear is formate cut. To represent in St the theoretical
gear tooth surface and the unit normal to E_, w .se the following matrix

equations:

r,(s0 ,eG,d,) = [M,.]r,(sC,OC) (26)

nt(s,&6,d,) = [L,,)n,(s,,6 ) (27)

where

cos'y 0 -sin'7m 0 1 0 0 0

0 1 0 0 0 1 0 -V7 (28)

sin7, 0 cos7m -AXm 0 0 1 H,

0 0 0 1 0 0 0 1

The surface Gaussian coordinates are s and 0., and d.(T , V2, H 2, and AX,) are
the machine-tool settings.

The numerical example presented in this paper is based on the experiment that

has been performed at the Dana Corporation (Fort Wayne, IN, U.S.A.). The initial
deviations An for each side of the real tooth surface have been obtained by

measurements on a coordinate measuring machine (fig. 6). The qrid for the meas-
urement is formed by nine sections along the tooth length, each section having five

points. The number of grid points k is therefore 45, and the reference point is at
the middle of the grid, i.e., the third point of the fifth section. In the measure-

(0)

ment, the coordinate y of the reference point is chosen to be zero and the
alignment angle 6 is determined from solving equation system (13).

The minimization of deviations was performed in accordance with the algorithm

described in MACHINE TOOL SETINGS TO MINIMIZE DEVIATIONS, and the results are
illustrated in figure 7 and table 1.
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Figure 7 Minimized deviations after corrections made to machine-tool settings

TABLE I. - RESULTS OF MINIMIZATION

fPressure angle, Ct = 21.250; cutter diameters = 9 in.,

point width of cutters = 0.08 in.]

Machine-tool Machine-tool setting parameters

settings H, Ax

mm mm rad mm

Initial 103.252550 27.466600 1.059816 0.009677

Corrected 103.25220 27.21603 1.06437 -0.53343

CONCLUSION

A general approa-ch for a computerized determination of deviations of a real sur-
face from the theoretical one based on coordinate measurements has been proposed. An

algorithm for computerized minimization of deviations by corrections of initially
applied machine-tool settings has been developed. The approach is illustrated with

the example of the tooth surface of a hypoid formate gear.
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